161 research outputs found

    A higher order space-time Galerkin discretization for the time domain PMCHWT equation

    Get PDF

    A temporal Galerkin discretization of the charge-current continuity equation

    Get PDF

    A robust and low frequency stable time domain PMCHWT equation

    Get PDF
    The time domain PMCHWT equation models transient scattering by piecewise homogeneous dielectrics. After discretization, it can be solved using the marching-on-in-time algorithm. Unfortunately, the PMCHWT equation suffers from DC instability: it supports constant in time regime solutions. Upon discretization, the corresponding poles of the system response function shift into the unstable region of the complex plane, rendering the MOT algorithm unstable. Furthermore, the discrete system becomes ill-conditioned when a large time step is used. This phenomenon is termed low frequency breakdown. In this contribution, the quasi Helmholtz components of the PMCHWT equation are separated using projector operators. Judicially integrating or differentiating these components of the basis and testing functions leads to an algorithm that (i) does not suffer from unstable modes even in the presence of moderate numerical errors, (ii) remains well-conditioned for large time steps, and (iii) can be applied effectively to both simply and multiply connected geometries

    A magnetic type integral operator which is stable till extremely low frequencies

    Get PDF
    We introduce a new magnetic field integral equation that does not suffer from low-frequency numerical cancelations even for extremely low frequencies (10-40Hz). The new equation is obtained by symmetrizing the standard MFIE with its dual equation and by using appropriately chosen quasi-Helmholtz projectors. When compared to mixed discretized MFIEs, the new equation maintains the favorable properties of mixed discretizations even without using high precision integration rules. Numerical results confirm the theoretical developments and show the effectiveness of the new scheme

    High-order div- and quasi curl-conforming basis functions for calderon multiplicative preconditioning of the EFIE

    Get PDF
    A new high-order Calderon multiplicative preconditioner (HO-CMP) for the electric field integral equation (EFIE) is presented. In contrast to previous CMPs, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of high-order quasi curl-conforming basis functions. Like its predecessors, the HO-CMP can be seamlessly integrated into existing EFIE codes. Numerical results demonstrate that the linear systems of equations obtained using the proposed HO-CMP converge rapidly, regardless of the mesh density and of the order of the current expansion

    A space-time mixed Galerkin marching-on-in-time scheme for the time-domain combined field integral equation

    Get PDF
    The time domain combined field integral equation (TD-CFIE), which is constructed from a weighted sum of the time domain electric and magnetic field integral equations (TD-EFIE and TD-MFIE) for analyzing transient scattering from closed perfect electrically conducting bodies, is free from spurious resonances. The standard marching-on-in-time technique for discretizing the TD-CFIE uses Galerkin and collocation schemes in space and time, respectively. Unfortunately, the standard scheme is theoretically not well understood: stability and convergence have been proven for only one class of space-time Galerkin discretizations. Moreover, existing discretization schemes are nonconforming, i.e., the TD-MFIE contribution is tested with divergence conforming functions instead of curl conforming functions. We therefore introduce a novel space-time mixed Galerkin discretization for the TD-CFIE. A family of temporal basis and testing functions with arbitrary order is introduced. It is explained how the corresponding interactions can be computed efficiently by existing collocation-in-time codes. The spatial mixed discretization is made fully conforming and consistent by leveraging both Rao-Wilton-Glisson and Buffa-Christiansen basis functions and by applying the appropriate bi-orthogonalization procedures. The combination of both techniques is essential when high accuracy over a broad frequency band is required
    • …
    corecore